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Abstract

Accelerated life-testing (ALT) is a very useful technique for examining the reliability of highly reliable

products. It allows testing the products at higher than usual stress conditions to induce failures more

quickly and economically than under typical conditions. A special case of ALT are step-stress tests that

allow experimenter to increase the stress levels at fixed times. This paper deals with the multiple step step-

stress model under the cumulative exposure model with lognormally distributed lifetimes in the presence

of Type-II and Progressive Type-II censoring. For this model, the maximum likelihood estimates (MLE)

of its parameters, as well as the corresponding observed Fisher Information Matrix (FI), are derived. The

likelihood equations do not lead to closed-form expressions for the MLE, and they need to be solved by

means of an iterative procedure, such as the Newton-Raphson method. We then evaluate the bias and

mean square error of the estimates and provide asymptotic and bootstrap confidence intervals. Finally, in

order to asses the performance of the confidence intervals, a Monte Carlo simulation study is conducted.

State of the art

Nowadays, most manufactured products are highly reliable with large lifetimes that result in large costs and

high experimental times when testing them under typical conditions. In those cases, when conventional

life-testing becomes unuseful, the reliability experimenter may adopt accelerated life-testing, wherein the

experimental units are subjected to higher stress levels than under normal operating conditions. Accelerated

life tests (ALT) are used to quickly obtain information on the life time distribution of products by testing

them at higher than nominal levels of stress to induce early failures. Furthermore, ALTs allow to examine

the effect of stress factors, such as pressure or temperature, on the lifetimes of experimental units. Data

collected from ALT needs to be fitted to a model that relates the lifetime to stress and estimate the

parameters of the lifetime distribution under normal conditions. This requires a model to relate the levels

of stress to the parameters of the lifetime distribution. One such model is the cumulative exposure model

introduced by Sedyakin (1966).

Accelerated life-testing may be performed either at increasing or constant high stress levels. In practice,

constant stress ALT leads to very few failures within the experimental time, reducing the effectiveness of

accelerated testing. A particular case of accelerated testing is the step-stress model, which allows for a

change of stress in steps at various intermediate stages of the experiment. Specifically, a random sample

of n units is placed on a life test at an initial stress level x1. At prefixed times τ1, τ2, . . . , τm−1, the stress

levels are increased to x2, x3, . . . , xm, respectively.

The step-stress model has been discussed extensively in the literature. Ganguly et al. (2015) and Xiong

(1998), among others, have all considered inference for the step-stress model assuming exponential lifetimes

based on different censoring schemes. Under progressive Type-II censoring, Xie et al. (2009) developed

both inference and optimal progressive scheme. While all these discussions deal with exponential step-

stress models, Khamis and Higgins (1998) and Kateri and Balakrishnan (2008) assume Weibull distributed

lifetimes. Balakrishnan et al. (2009) and Lin and Chou (2012) have developed simple and multiple step-

stress models, respectively, with lognormally distributed lifetimes and Type-I censoring. For a comprehensive

review on step-stress models refer to Gouno and Balakrishnan (2001)or Balakrishnan (2009). One may

refer to Balakrishnan (2007) for a overview of various developments relating to progressive censoring.
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Main contributions

In this paper, we assume both Type-II censoring, where the experiment terminates when a pre-specified

number r (r < n) of failures is observed; and Progressive Type-II censoring, where a predetermined

number of survival units is removed from the test whenever a failure occurs and, again, the experiment

terminates when a pre-specified number of failures is reached. Progressive censoring schemes are not very

common in the literature. However, they are a very useful tool as they permit obtaining information about

the lifetimes of the units without the need of exposing all units to high levels of stress1, and therefore, with

lower associated costs.

We further assume lognormally distributed life times. As it can be deduced from the previous section,

the literature on this topic is mainly focused on the exponential distribution. However, it is important to

develop inference methods for other types of distributions in order to take into account the different lifetime

distributions that may arise in real life.

Moreover, instead of the simple step-stress model commonly assumed in the literature, we develop a

multiple step-stress model where the number of steps can be higher than two (and, thus, has as a special

case the simple model). The location parameters µi of the lognormally distributed lifetimes in each step

are given by the linear link function: µi = γ0+ γ1xi. Assuming a link function permits avoiding estimating

one location parameter per step, as only γ0 and γ1 need to be estimated independently of m and, therefore,

there is no need to impose a minimun number of failures at each step. Furthermore, it allows obtaining

the parameters of the lognormal life time distribution for whatever lever of stress xi. When assuming this

link function, some physical models, such as the Arrhenius equation or the Inverse Power relationship, can

be applied, which permits modeling more real situations.

In summary, let Ti and xi be the lifetime and stress level at step i. Then,

log(Ti) = γ0 + γ1xi + ε, ε ∼ N(0, σ2)

E[log(Ti)] = γ0 + γ1xi = µi

log(Ti) ∼ N(µi, σ
2),

where we further assume that the scale parameter σ is free of the stress levels.

Without loss of generality, we briefly introduce the multiple step-stress testing experiment under pro-

gressive Type-II censoring (note that classical Type-II censoring is a special case of progressive Type-II

censoring, where all the units are removed from the experiment when the r-th failure is observed).

Let x1, x2, . . . , xm be the stress levels, such that x1 < x2 < · · · < xm. A random sample of n

experimental units are placed on a life-test at an initial stress level of x1. Then, at a prefixed time τ1, the

stress level is changed to x2; next, at time τ2, the stress level is changed to x3, and so on. At the time of the

first failure, R1 of the n− 1 surviving units are randomly removed from the experiment; at the time of the

second failure, R2 of the n−2−R1 surviving units are randomly removed from the experiment, and so on;

the test continues until the rth failure occurs at which time all the remaining Rr = n−r−R1−· · ·−Rr−1

surviving units are removed.

For i = 1, 2, . . . ,m, let ni be the number of units failed at stress level xi (i.e., in the time interval

(τi−1, τi]), and ti,j denote the jth ordered failure time out of ni units at level xi, j = 1, 2, . . . ni.

At stress level xi, the life time Ti of a test unit is assumed to follow a lognormal distribution with

location and scale parameter µi and σ, respectively. The location parameters µi are given by the following

linear link function:

µi = µ(xi) = γ0 + γ1xi, (1)

and the scale parameter σ is assumed to be free of the stress levels. Therefore, we need to estimate the

regression parameters γ0 and γ1 (that will give us the relation between the life time and the stress level)

as well as the scale parameter.

1Note that, in this case, the units are censored before the end of the experiment and, thus, are not exposed to the same

level of stress than the last failed unit. For that reason, their residual life is larger and can be reused more easily.
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We further assume that the data comes from a cumulative exposure model. This model relates the

lifetime distribution of experimental units at one stress level to the distributions at preceding stress levels

by assuming that the residual life (i.e., the survival/reliability function) of the experimental units depends

only on the cumulative exposure the units have experienced, with no memory of how this exposure was

accumulated. This is obtained by adding an artificial extra time (si−1) to the lifetimes at each stress level

(i) to reflect the exposure suffered at previous levels. As the exposure is reflected in the survival probability,

si−1 is given by the equation

Fi(si−1;µi;σ) = Fi−1(τi−1 + si−2 − τi−2;µi−1, σ), i = 2, 3, . . . ,m, (2)

where τ0 = 0, s0 = 0, and Fi(t;µi, σ) is given the Cumulative Distribution Function (CDF) of a log-normal

distribution with location and scale parameters equal to µi and σ, respectively. Note that si−1 is an artificial

time added equivalent to the “damage” suffered in the previous steps, in terms of the CDF.

The likelihood function for the parameter vector θ = (γ0, γ1, σ) based on the observed data and the

previous assumptions is

L(θ) = C
m∏
i=1


ni∏
j=1

g(ti,j) [1−G(ti,j)]
Rk(i,j)

 , (3)

where g and G and the pdf and CDF of the lifetimes under the Cumulative exposure model and log-normal

distribution previously defined, k(i, j) refers to the ordered position of the (i, j)-th unit in the global sample

and C is a constant (given in the paper). This likelihood takes into account the information given by the

censored units: its lifetime is, at least, equal to the time they were part of the experiment.

From Equation (3, we further determine the likelihood equations for the parameters. However, explicit

solutions do not exist for them and numerical methods, such as the Newton-Raphson procedure, need to

be used to compute the MLE of θ.

The Fisher information matrix, which is the inverse of the variance-covariance matrix of the MLE of

the vector parameter, is also given to be used later in the computation of the approximate confidence

intervals.

Bootstrap confidence intervals, in particular Percentile Bootstrap CIs, are also derived. As a re-

quirement of the Bootstrap CIs computation, an algorithm to generate Bootstrap samples of this complex

model (multiple step-stress with progressive Type-II censoring) is also given.

A Monte Carlo simulation study has been conducted in order to evaluate the performance of the

proposed method. It includes several sample sizes, censoring proportions, censoring schemes, number of

stress levels, variance levels, etc. The results include bias, Mean Square Errors, coverage probabilities and

lengths of the two types of confidence intervals proposed. They are shown by means of tables and figures

for a better understanding and analysis.

It is shown that the method provides accurate and almost unbiased estimates, as well as well-performing

confidence intervals. Better results are obtained when the number of steps in the model is large and complete

right censoring is avoided. As usual, the larger number of non-censored units, the more precise are the

results. An interesting feature of this model is the fact that large variances do not affect the quality of the

results: similar levels of accuracy and interval lengths.
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